Smart Buoys for Marine Environment Monitoring: The Case of MARIABOX Project

8th FerryBox 2017
Zenonas Theodosiou, SignalGeneriX

info@signalgenerix.com www.signalgenerix.com
Limassol, Cyprus
Marine environmental monitoring

- Vital problem
 - Research and development attention

- Monitoring using research vessel
 - Expensive, time-consuming, low resolution both in time & space

- Sensors
 - Promising alternatives for monitoring
 - Unmanned operation, easy deployment, real-time monitoring, low cost, etc.

- Physical & chemical parameters
 - water temperature, pressure, wind direction, wind speed, salinity, turbidity, pH, oxygen density, chlorophyll levels, etc.

- Application areas
 - Water quality monitoring, ocean sensing and monitoring, coral reef monitoring, marine fish farm monitoring, etc.
Why Smart Buoys?

- **Flexibility**
 - Buoy sensors are fully customizable
 - Monitoring platforms can be adapted and modified as monitoring priorities change
 - Buoys can house from one to hundreds of sensors, meeting the needs and applications

- **Data Streaming**
 - Sampling can occur as frequently as every minute
 - Providing data 24 hours a day, 7 days a week

- **Independency**
 - Wind /solar power or battery power options
Smart Buoys

Necessity:
- Wireless marine environment monitoring
- Long-term data collection at scales and resolutions that are difficult, if not impossible, to obtain otherwise

Merging technologies:
- Sensing
- Cellular communications
- Internet-based information sharing

Structure/ basic components:
- Sensing and analysis system
- Modular communication system
- Power system
- Software platform
- Cell phone application
Sensing and analysis system

- General
 - Audio sensors
 - Smell sensors
 - Infra-Red (IR) sensors
 - Cameras
 - ...

- Water Quality
 - Dissolved oxygen
 - pH
 - Conductivity
 - Salinity
 - Turbidity
 - Temperature
 - Depth
 - ...

- Air Quality
 - Wind speed, direction, etc.
 - Humidity
 - Barometric pressure
 - Precipitation
 - ...

Diagram showing different types of sensors and their corresponding icons.
Communication system

- Short Distance
 - Wifi/Bluetooth
- Middle Distance
 - 3G/4G
- Long Distance
 - Satellite
Power system

- Get the energy from the environment by a harvesting system
 - Solar
 - Wind
 - Batteries
Software platform / Mobile Application

- Marine environmental monitoring
 - Data view monitoring / Real-time data display
 - Data Analysis
 - Notifications/Alerts

- Buoy Management
 - Health and condition of each sensor
 - Configuration parameters
 - Power administration
 - …
The MARIABOX case

- SignalGeneriX has developed 2 smart buoys which will be used for marine environment monitoring in the framework of FP7 EU funded Research Project MARIABOX

- The buoys will be used for the pilot demos of the MARIABOX system in Cyprus and Spain
MariaBOX Project\(^{(1)}\)

- MariaBOX: Marine environmental in situ Assessment and monitoring tool BOX
 - Call: FP7-OCEAN-2013
 - Topic: OCEAN 2013.1 - Biosensors for real time monitoring of biohazard in the marine environment
 - Duration: 48 months (2014-2018)
 - Consortium: 13 beneficiaries from 6 countries
 - Total budget: 7.1M €
MariaBOX Project(2)

- Development of a wireless marine environment analysis device for monitoring chemical and biological pollutants

- Objectives
 - The device will be of high-sensitivity, portable and capable of repeating measurements over a long time, allowing permanent deployment at sea
 - Biosensors will be developed for man-made chemicals & microalgae toxins relevant to shell fish and fish farming
 - The system will be demonstrated and validated in four different scenarios in selected locations in Cyprus, Norway, Spain, Ireland
Pilot demonstration: Cyprus

- Leader: Department of Fisheries and Marine Research of the Republic of Cyprus (DFMR)
- Location: Between Vassilikos Bay and Zygi fishing shelter
- Depth: ~30m
Pilot demonstration: Spain

- Leader: Institute of Marine Sciences (CSIC)
- Location: A micro-tidal estuary located in the Ebre river Delta, in the North-western Mediterranean Sea (Alfacs Bay)
- Depth: ~6 m
Buoys’ Requirements

- **Anchorage**
 - Cyprus: ~30m
 - Spain: ~6m

- **Payload**
 - MariaBox System
 - Water Tanks
 - Power Equipment
 - Communication Equipment

- **Daily Power Consumption**: 3000Wh
Buoys Dimensions

<table>
<thead>
<tr>
<th>Pilot Case</th>
<th>Height (m)</th>
<th>Weight (Kg)</th>
<th>Base’s Dimensions (m)</th>
<th>Diameter</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyprus</td>
<td>7.1</td>
<td>950</td>
<td></td>
<td>3</td>
<td>1.10</td>
</tr>
<tr>
<td>Spain</td>
<td>6.3</td>
<td>750</td>
<td></td>
<td>2.25</td>
<td>0.90</td>
</tr>
</tbody>
</table>

Cyprus

- Height: 3 m
- Diameter: 0.9 m
- Total Height: 3.9 m

Spain

- Height: 2.4 m
- Diameter: 0.9 m
- Total Height: 3.3 m
Total Payload

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Weight (Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MariaBox System</td>
<td>142</td>
</tr>
<tr>
<td>2</td>
<td>Batteries</td>
<td>408</td>
</tr>
<tr>
<td>3</td>
<td>Solar panels</td>
<td>72</td>
</tr>
<tr>
<td>4</td>
<td>Water tanks</td>
<td>105</td>
</tr>
<tr>
<td>5</td>
<td>Communication Module</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Power Module</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>Charger Controller</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>743</td>
</tr>
</tbody>
</table>
- Daily Power Consumption: 3000Wh
- Power System Components (Autonomy: 4.5 days)

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Dimensions HxWxD (cm)</th>
<th>Weight</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar Panels (250W)</td>
<td>4</td>
<td>1665 x 991 x 38 mm</td>
<td>72Kg</td>
<td></td>
</tr>
<tr>
<td>Batteries (2V, 550Ah)</td>
<td>12</td>
<td>502x206x145 mm</td>
<td>408Kg</td>
<td>Total 1100Ah</td>
</tr>
<tr>
<td>Solar Charge Controller</td>
<td>1</td>
<td>128x165x315 mm</td>
<td>4.5 Kg</td>
<td></td>
</tr>
<tr>
<td>Voltage Stabilizer</td>
<td>1</td>
<td>64x163x160 mm</td>
<td>1.4Kg</td>
<td></td>
</tr>
</tbody>
</table>
Buoys Structure

- **Base** (main part)
 - Includes the *waterproof box* for hosting the MARIABOX system, and space for hosting battery compartments, water tanks, power module and communication module

- **Iron tube** (bottom part)

- **Iron construction** (top part)
 - Hosts the solar panels, marine lantern and radar reflector
Buoys Base\(^{(1)}\)

- Made by marine plywood and covered by fiberglass
- The solid part of the buoy is closed, watertight and filled by polyurethane foam
- Steel pipes under the base which are used for the connection of the iron tube
- Protective Fender Rubber is placed around the buoy
- Carrying handles are placed to allow the safe transportation of the buoy
- 4 connector-handles are placed on the top of the base for the connection of the iron structure
Buoys Base (2)

- The inner space of the base hosts
 - 12 battery pockets which are accessible through the watertight doors of the base
 - 4 water tanks of total weight of 105 Kg which are accessible through the watertight doors of the base
 - The power and communication modules which are accessible through the watertight doors of the base
Waterproof Box

- Made by marine plywood and covered by fiberglass
- 4 doors, one at each side
 - Allows full access to MARIABOX system
- System Ventilation

<table>
<thead>
<tr>
<th>Pilot Case</th>
<th>Length (m)</th>
<th>Width (m)</th>
<th>Height (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyprus</td>
<td>1</td>
<td>1.28</td>
<td>1.22</td>
</tr>
<tr>
<td>Spain</td>
<td>0.9</td>
<td>0.84</td>
<td>1.22</td>
</tr>
</tbody>
</table>

![Image of Waterproof Box]
Buoys Development(1)
Buoys Development(2)
Buoys Development (3)
We will be happy to answer any question and demonstrate our technology to potential collaborators and partners.

For Further Information Contact
Dr. Tasos Kounoudes
Chief Executive Officer
Tel: +357 25870072
Email: tasos@signalgenerix.com