

9 September 2014

The OceanoScientific® Programme:
Scientific Data Acquisition by Sailing Ships,
results from the 2013 and 2014 campaigns

Contents

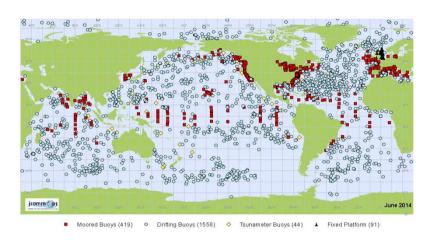
•	Review of the current platforms for offshore measurements	3
•	Geographical coverage - Founding scientific assessment	4
•	What about sailing boats?	6
•	Creation of an innovative project: the OceanoScientific® Programme	7
•	What do we actually measure and collect?	9
•	OceanoScientific® Campaign / Bark EUROPA	10
•	OceanoScientific® Campaign / NAVOSE® Boogaloo	13
•	Upcoming OceanoScientific® Campaigns	2:
•	Sailing races and associated engineering challenges	23

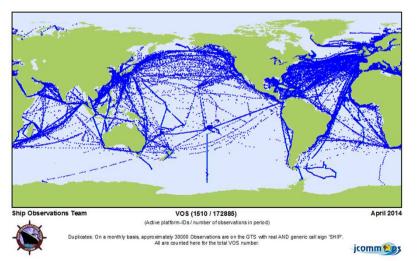


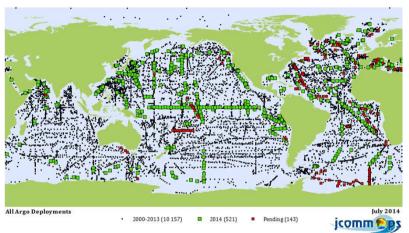
Current platforms for sea exploration

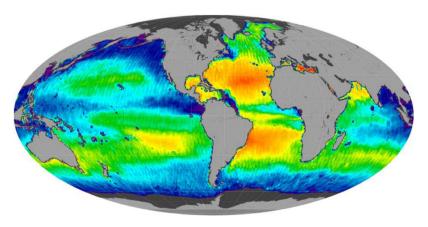
Surface Devices: Moored and drifting buoys

Sub-surface Devices: Argo profilers, gliders and XBT's


Boats: Research Vessels, Ships of Opportunity


Remote sensing: Oceanographic satellite observations


Geographical Coverage


Data Buoys positions - June 2014

Voluntary Observing Ships Routes - April 2014

Argo Drifters Float - July 2014

Aquarius Satellite SSS Data - June 2014

Founding scientific assessment

Scientists lack in situ quality data at the ocean - atmosphere interface on sea routes subject to little traffic, especially around the Antarctica

This handicaps and slows down the understanding of causes and consequences of climate change / warming

What about Sailing Boats?

- Enhanced manoeuvrability thanks to their small size
- Guaranteed safety despite high speeds (up to 25 knots)
- This makes sailing vessels highly flexible platforms
- Cheaper than a research vessel expedition
- Complement the ocean observation performed by ships of opportunity
- Green platforms using renewable energy sources

Creation of an innovative project

Geographical data gap at high latitudes

Lack of scientific in-situ quality data

Expertise in the sailing field

OceanoScientific® Programme

- Collecting data at the ocean atmosphere interface
 on sea routes subject to little or no exploration
- 15 or more-meter sailing yachts as innovative platforms
- Transmitting data free of charge to the scientific community

OceanoScientific® Programme

- Innovative scientific programme initiated in 2006
- Unprecedented approach studying climate change
- Under the authority of UNESCO institutions (WMO and IOC)
- With the support of international scientific research institutes
- A unique scientific material: the OceanoScientific® System
- Recognised results after seven years of R&D (2006 2014)

Physical and Chemical data acquisition

12 physical and chemical parameters logged every 6 seconds

- Transmission in near real-time, as per one file an hour
- Permanent scientific contact with the shore
- Plug and Play material: extra parameters can be added

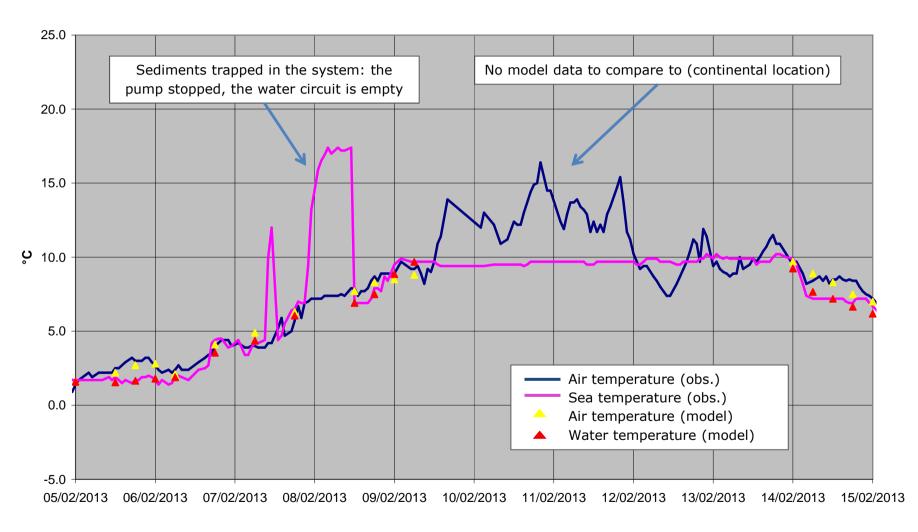
Antarctic Campaign 2013 / Bark EUROPA

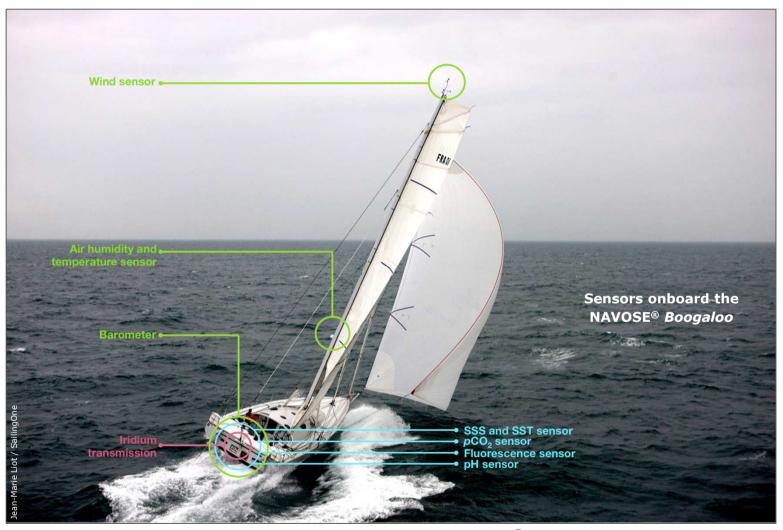
- Three-master Bark EUROPA
- Ushuaia Antarctic Peninsula
- Ushuaia South Shetland Islands
- Weddell Sea South Georgia
- Tristan da Cunha Cape Town

In use for 96 days

Two 19-day sails

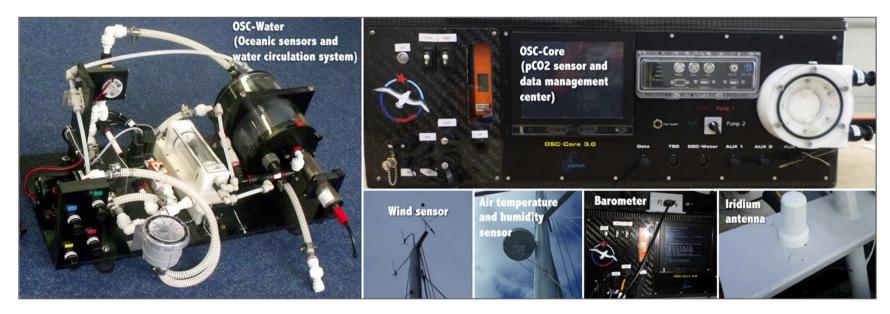
One 52-day sail




Antarctic Campaign 2013 / Bark EUROPA Air and Sea Surface Temperatures

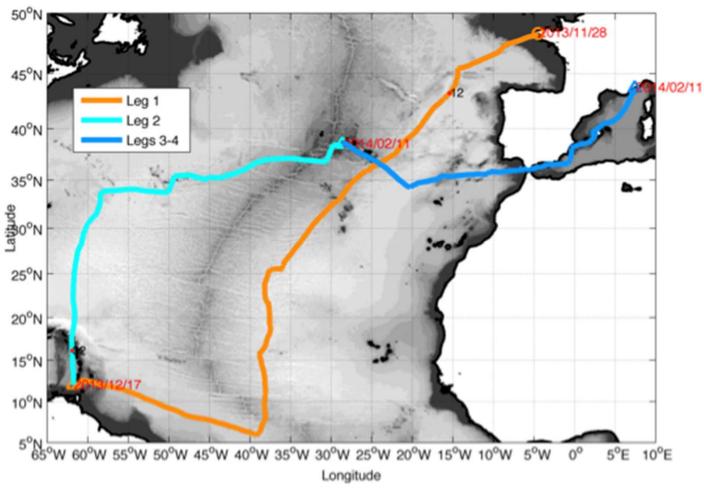
Comparisons between in-situ measured data and Arpège Model - Comparison realised by Météo-France

Navire A Voile d'Observation Scientifique de l'Environnement - NAVOSE®



Navire A Voile d'Observation Scientifique de l'Environnement - NAVOSE®

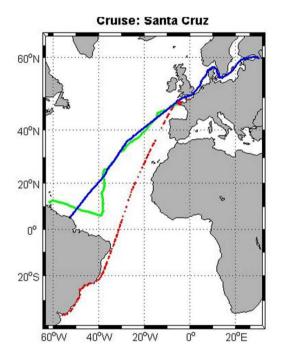
OSC System modules and sensors onboard the NAVOSE® Boogaloo



Atlantic Campaign 2013 - 2014

NAVOSE® - Boogaloo

North Atlantic and Mediterranean expedition November 2013 to April 2014 Chart LPO - IFREMER



Atlantic Campaign 2013 / NAVOSE® Sea Surface Temperature & Salinity

- -- NAVOSE® Boogaloo
- -- Colibri
- -- Santa Cruz

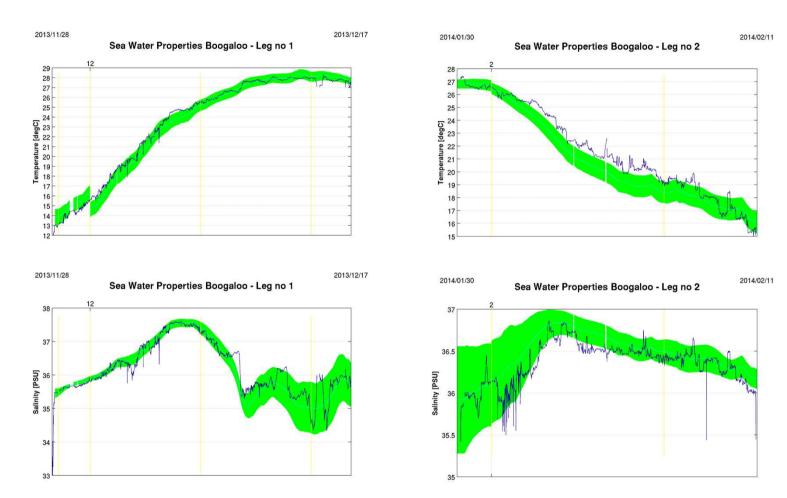
The NAVOSE® *Boogaloo*, Colibri and Santa Cruz trajectories across the Atlantic

Santa Cruz	47° 45'N 07° 01'W	29/11 - 06h13	SST = 13.233	SSS = 35.555
NAVOSE [®] <i>Boogaloo</i>	47° 45'N 07° 00'W	30/11 - 07h50	SST = 13.225	SSS = 35.565

Santa Cruz and the NAVOSE® *Boogaloo* SSS and SST data comparisons at a single crossing point

Colibri	9° 04' N 49° 36'W	13/12 – 00h22	SST = 28.22	SSS = 34.914
NAVOSE [®] <i>Boogaloo</i>	9° 04' N 49° 31'W	14/12 – 21h22	SST = 27.97	SSS = 35.101

Colibri and the NAVOSE® *Boogaloo* SSS and SST data comparisons at a single crossing point



Atlantic Campaign 2013 / NAVOSE® Sea Surface Temperature & Salinity

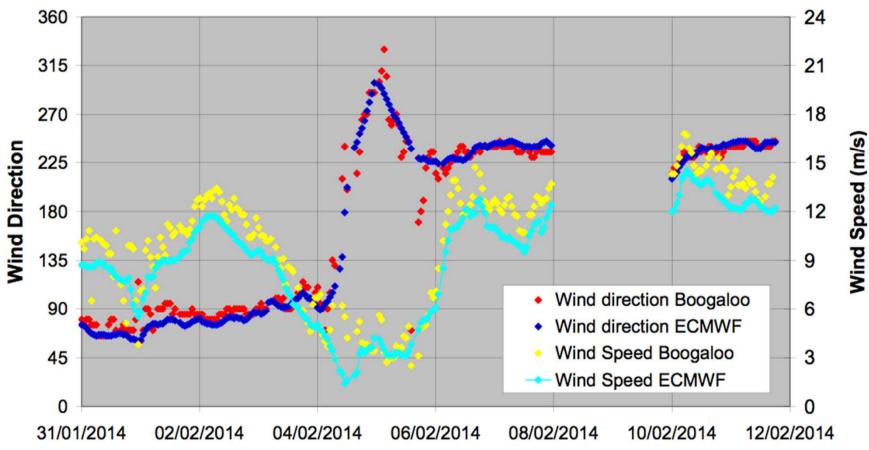
SST and SSS compared to ISAS-13 monthly climatology and annual variance

	29/11/2013					
	29/11/201 11H UTC			12H UTC		
	NAVOSE® Boogaloo	Brittany	Mercator	NAVOSE [®] Boogaloo	Brittany	Mercator
Pressure (hPa)	1037,4	1037,5		1036,7	1036,9	
Air Temperature (°C)	11,75	12,1		11,95	11,9	
Dew Point (°C)	8,35	8,3		8,35	8,4	
SST (°C)	13,94	13,6		13,77	13,5	
SSS (PSS)	35,63		35,58	35,64		35,58
Wind Direction (°)	20	360		15	350	
Wind Speed (m.s ⁻¹)	8,5	5,1		7,6	6,7	

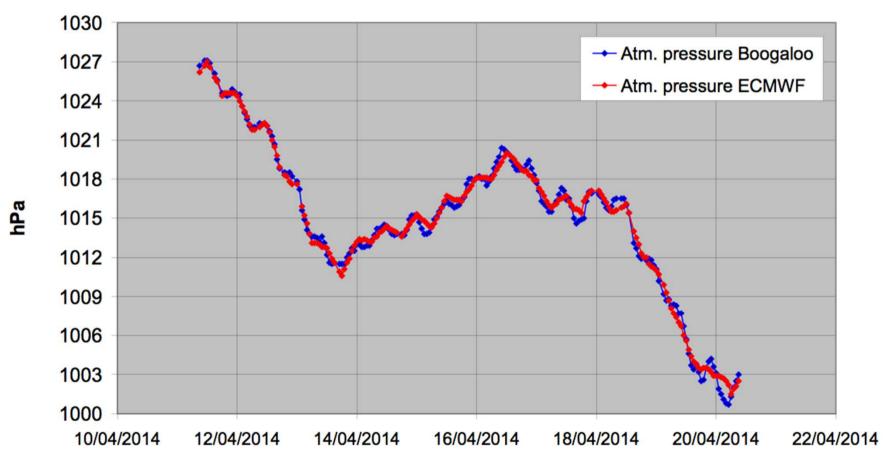
The havose boogaroo data compansons with the brittany intolled buoy (47 29 11 - 0 25 w) and mercator moder output

	12/12/2013					
		15H UTC				11H UTC
	NAVOSE [®] Boogaloo (Average 14-16h)	Buoy 41734	Mercator	ECMWF	Buoy 13009	Buoy 13009
Pressure (hPa)	1013,2	1013,2		1013		
Air Temperature (° C)	28,15			26,3	26,9	
Humidity (%)	81%			82%	82%	
Dew Point (°C)		8,3				
SST (°C)	28,11					27,51
SST Buoy hull (° C)		28,05		27,8		
SST Seabird (°C)		28,047				
SSS (PSS)	35,64	35,659	35,24			

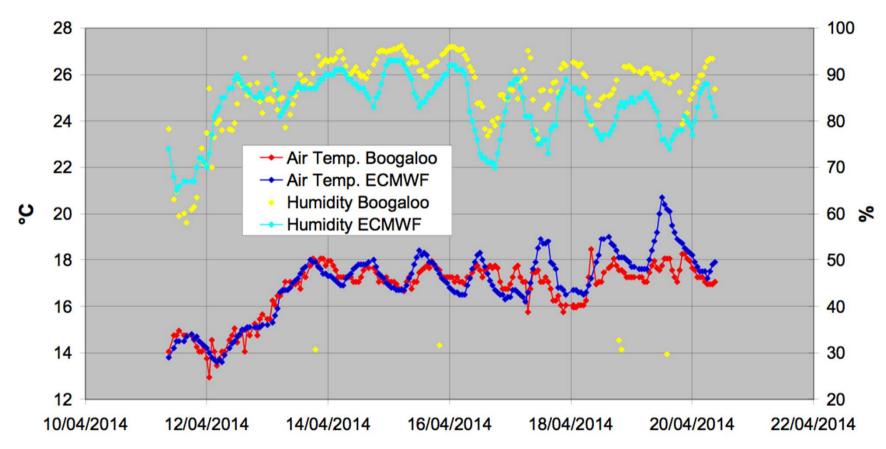
The NAVOSE® Boogaloo data comparisons with a drifting and a moored buoys and Mercator and ECMWF models output



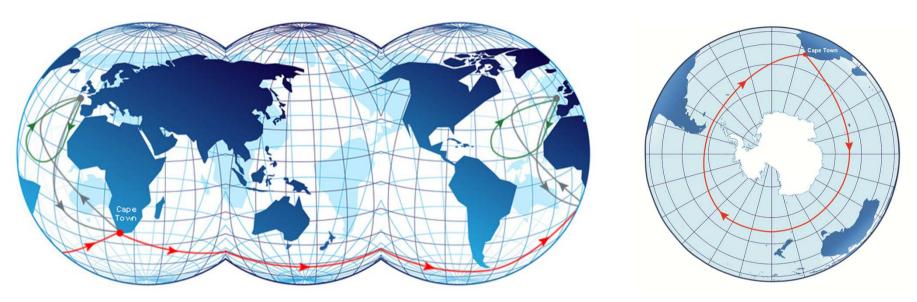
The NAVOSE® *Boogaloo* - Leg Grenada / Horta Wind Direction and Speed, Comparisons with ECMWF analysis



Atmospheric pressure measured onboard the NAVOSE® Boogaloo and compared to the ECMWF values



Air temperature and humidity measured onboard the NAVOSE® Boogaloo and compared to the ECMWF values



Around the Atlantic / Around the Antarctic

Navigation around the Atlantic during Northern Hemisphere Summer Around the Antarctic Campaign during Southern Hemisphere Summer

Shore team in liaison with the scientific partners will provide routings based on weather and scientific phenomenon of interest as they arise.

OceanoScientific® Campaigns will sail into these hostile areas every year.

Antarctic Campaigns / NAVOSE® Boogaloo

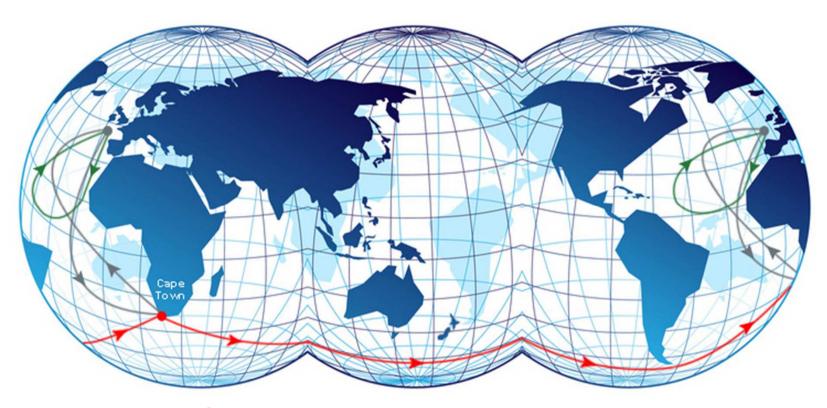
• OceanoScientific® 2013 - 2014

A single NAVOSE®: Boogaloo

- OceanoScientific® 2014 2015
- Then 2015-16, 2017-18, etc...

Two NAVOSE®:

- Scientific data redundancy
- Enhanced security



Around the Globe Sailing Races

The OceanoScientific® Programme targets all the sailing boats entering the next offshore races through the Southern seas: Barcelona, Volvo, Vendée Globe...

Down the Atlantic - through Indian and Pacific Oceans - Up the Atlantic

Current engineering challenges to meet demanding racing requirements

- Volume and weight reduction to fit onboard in small compartments
- Power consumption limitation to keep fuel volume required down
- Improved resistance to shocks and vibrations
- Enhanced water tightness
- More hydrodynamic water intake pipes not to impact performances
- More efficient electro-mechanical parts for a 100% unattended system

Any question?

Presented by:

Loïc Petit de la Villéon - IFREMER / loic.petit.de.la.villeon@ifremer.fr

With the support of:

Fabienne Gaillard - IFREMER / fabienne.gaillard@ifremer.fr

Thierry Reynaud - IFREMER / thierry.reynaud@ifremer.fr

Pierre Blouch - Météo-France / pierre.blouch@meteo.fr

Cindy Guillemet - SailingOne / cg@sailingone.com